idk we're trying out pmm
This commit is contained in:
@ -6,50 +6,3 @@
|
||||
|
||||
//extern uint32_t endkernel; // found in link.ld
|
||||
|
||||
/**
|
||||
* The page table must be page aligned (aligned at 4KiB)
|
||||
*
|
||||
*
|
||||
* This is a temporary solution, as we want a page frame allocator, to properly get page frames.. but this works for now
|
||||
*/
|
||||
uint32_t page_directory[PAGE_DIRECTORY_ENTRIES] __attribute__((aligned(4096)));
|
||||
|
||||
uint32_t first_page_table[PAGE_TABLE_ENTRIES] __attribute__((aligned(4096)));
|
||||
|
||||
void setup_page_table(void)
|
||||
{
|
||||
uint32_t i;
|
||||
for (i = 0; i < PAGE_TABLE_ENTRIES; i++) {
|
||||
first_page_table[i] = (i * 0x1000) | 3; // supervisor, r/w, present
|
||||
}
|
||||
puts("test");
|
||||
}
|
||||
|
||||
void setup_page_dir(void)
|
||||
{
|
||||
setup_page_table();
|
||||
/**
|
||||
* Now that we have a page directory, we need to blank it.
|
||||
*
|
||||
* The page directory should have exactly 1024 entries. We will set each entry to not present, so that the if the
|
||||
* MMU looks for that page table, it will see that it is not there yet.
|
||||
*/
|
||||
int i;
|
||||
for (i = 0; i < PAGE_DIRECTORY_ENTRIES; i++) {
|
||||
// This sets the following flags to the pages:
|
||||
// Supervisor: Only kernel-mode can access them
|
||||
// Write Enabled: It can be both read from and written to
|
||||
// Not Present: The page table is not present
|
||||
page_directory[i] = 0x00000002;
|
||||
}
|
||||
|
||||
page_directory[0] = ((uint32_t) first_page_table) | 3;
|
||||
}
|
||||
|
||||
void setup_paging(void)
|
||||
{
|
||||
setup_page_dir();
|
||||
|
||||
load_page_directory(page_directory);
|
||||
enable_paging();
|
||||
}
|
||||
|
66
kernel/arch/pmm/pmm.c
Normal file
66
kernel/arch/pmm/pmm.c
Normal file
@ -0,0 +1,66 @@
|
||||
#include <kernel/pmm.h>
|
||||
|
||||
/**
|
||||
* What i want to do is create a linked list of all the memory structures
|
||||
*
|
||||
* Theres one at the very start of the memory
|
||||
*
|
||||
* one at 1MB
|
||||
*
|
||||
* and then one provided by ram.
|
||||
*
|
||||
*
|
||||
* So the idea is to create a way to access memory through this such that,
|
||||
* when you give a bit block number, it'll go through the first item in the linked list, if the block is out of that range, it
|
||||
* traverses to the next node, tries to find it there, and then continues until it either runs out of memory, or finds a location
|
||||
*/
|
||||
|
||||
#define PMM_PAGE_SIZE 4096
|
||||
|
||||
struct pmm_mem_info {
|
||||
uint64_t startaddr;
|
||||
uint64_t len; // in kb
|
||||
uint32_t* bitmap;
|
||||
};
|
||||
|
||||
#define PMM_GET_MEM_BLOCKS(x) x.len / PMM_PAGE_SIZE
|
||||
|
||||
struct pmm_mem_info main_mem;
|
||||
|
||||
void __pmm_set(int bit, uint32_t* bitmap)
|
||||
{
|
||||
bitmap[bit / 32] |= (1 << (bit % 32));
|
||||
}
|
||||
|
||||
void __pmm_unset(int bit, uint32_t* bitmap)
|
||||
{
|
||||
bitmap[bit / 32] &= ~(1 << (bit % 32));
|
||||
}
|
||||
|
||||
void __pmm_first_free(struct pmm_mem_info mem_block)
|
||||
{
|
||||
for (uint32_t i = 0; i < PMM_GET_MEM_BLOCKS(mem_block) / 32; i++) {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void pmm_set(int bit)
|
||||
{
|
||||
/**
|
||||
* Here we want to calculate if the bit is over the length
|
||||
* subtract the length and bit amount so that we compensate for the bit map
|
||||
*
|
||||
* i.e. (length / 4096) == amount of blocks in that specific mem region
|
||||
* if (bit > amt of blocks),
|
||||
* go to next node, subtract amt of blocks from bit, and pass that
|
||||
*
|
||||
* below is merely a temporary solution
|
||||
*/
|
||||
__pmm_set(bit, main_mem.bitmap);
|
||||
}
|
||||
|
||||
void pmm_unset(int bit)
|
||||
{
|
||||
// TODO: same as above
|
||||
__pmm_unset(bit, main_mem.bitmap);
|
||||
}
|
Reference in New Issue
Block a user